Analyse spatiale avec MapInfo

Application avec Vertical-Mapper

Erwan Bocher

Objectif : Manipuler les différentes fonctionnalités de Vertical Mapper.

Données : Les données sont dans le fichier raster.

Note :

Vertical Mapper propose deux types de grid : les grids numériques qui contiennent une donnée numérique (un MNT par exemple) et qui sont stockés dans des fichiers ".GRD "et les grids classifiés qui contiennent une donnée alphanumérique et qui sont stockés dans des fichiers ".GRC ".

Etape 1 : Importer des données au format Esri shapefile

Aller dans Outils/Traducteur Universel

Convertissez les données au format tab, puis importez-les dans Mapinfo.

Etape 2 : Construire un MNT (Modèle Numérique de Terrain)

Pour pouvoir faire une interpolation avec Vertical Mapper, vous devez disposer d'un fichier altimétrique de points. Allez dans le menu Vertical Mapper et sélectionnez Create Grid/Poly to point, sélectionnez le fichier de courbes de niveau.

la Poly-to-Point	
Celect Table: bocage courtesZ parcelles	Extract From Polylines IT Regions Also Include Existing Foints
	Distance Eetween Points C Uop Nocco Only Maximum Distance. 1,300.0003 m
File name: C:\tomp\mapinfo\ccurs\courbooZ_	pp.tab <u>D</u> rowse
<u>C</u> k	Cancel

Ensuite menu Vertical Mapper et sélectionnez Create Grid/Interpolation, puis la méthode Inverser Distance.

law Select Interpolation Method	Select Table and Column
Transference	Select_able to Grid: Select Column: bccage courbesZ parcellee courbesZ_ptp Projection
Sincothing Weighting Interpolation	Lcac Table
Netural Neighbour Simple Advanced	Enter Data Description: Use .TRI Eile Unit Type Motoro
Helr:	Eelp << <u>B</u> ack <u>N</u> ext>> <u>C</u> ancel

Sélectionnez le fichier de points et le champ contenant les valeurs altimétriques. Dans la nouvelle fenêtre modifiez la taille de la cellule par la valeur 10.

😂 Inverse Distance We	eighted Interp	olation	×
Paramotorc Cell <u>Q</u> ize: 1 Search <u>R</u> adius: 1 Display Radius: 1 Exp <u>2</u> nent: 2 Gitc Dimensions: Gitc File Size	0.3000 845.4278 045.4270 0300 9118 x 467 1.545 K	Criter a Number of Zuries. 1 1 Min mum # of Points: 1 1 Mag mum # of Points: 25 1 Zone Orientation: 0.0000 Radius Multiplier 1.0010 Weight to Furthest Point Only	
File <u>n</u> ame: C.\.emp\mapinfo\cours!	vZ.lab	Вющье	
Llelp <u>E</u> xents		≺≺ <u>D</u> ac∢ <u>F</u> inish <u>C</u> ancel	

La grille produite est chargée dans une nouvelle fenêtre.

Etape 3 : Modifier les propriétés d'affichage d'une grille, obtenir des informations

Activer le gestionnaire de grille : Menu/Vertical Mapper/ Show Grid Manager

Ou cliquez sur le premier icône de la barre d'outils.

Cliquez sur l'icône Colour et adaptez la classification des valeurs du MNT. L'insertion de nouvelle couleur dans le profil se réalise en double-cliquant sur une classe.

Data nistogram	Value	ermite
Z.grd	45.00	с. г
	67.53	14.4
	E3.35	47.L
	88.55	77.0

Pour améliorer le rendu de votre MNT, vous pouvez demander à Vertical Mapper de calculer un estompage (option Add Relief Shading).

Le résultat donne l'impression d'une visualisation en 3D. Une fois que l'estompage est calculé, il est écrit dans le fichier grid. Il est alors accessible depuis le Grid Manager par la case à cocher située dans la colonne sous l'icône en forme de soleil.

Pour obtenir la valeur d'un pixel sur une grille : cliquez dans la barre d'outils sur l'icône (1) puis pointez sur un pixel (2), une fenêtre s'ouvre avec la valeur du pixel (3).

Vous pouvez en cochant l'option Capture Data, enregistrer votre point dans un fichier MapInfo

Exercice : Réalisez une interpolation avec une méthode différente

Etape 4 : Comparaison de grilles

Le grid Calculator du gestionnaire de grilles est conçu pour être utilisé comme une calculette scientifique qui permet d'appliquer des expressions mathématiques à un ou plusieurs grilles. Les calculs sont réalisés cellule par cellule. On accède à l'outil Grid Calculator par le bouton Analysis et l'option Calculator du gestionnaire de grilles.

Avec le Grid Calculator vous pouvez comparer les résultats obtenus avec deux grilles.

Par exemple : Comparer les résultats de vos deux grilles interpolées en réalisant une soustraction.

Etape 5 : Calcul d'indicateurs topographiques

A. <u>Calcul de pentes et d'orientations</u>

Vertical Mapper à partir du bouton Analysis et l'option Calculator du gestionnaire de grilles permet de calculer deux indicateurs topographiques : la pente et l'orientation (aspect).

light Slope and Aspect	
Slope Parameters Description:	🗖 Calculate as % grade
Slope Grid of	
File name:	
C:\temp\mapinfo\cours\ID_Slope.tab	Browse
Aspect Parameters Calculate Aspect Relative to True North Calculate Aspect Relative to Y-axis Description:	
Aspect Grid of	
File name: C:\temp\mapinfo\cours\ID_Aspect.tab	Browse
<u>H</u> elp	Ok <u>C</u> ancel

B. Création de courbes de niveau

Il est par exemple possible de construire des isolignes à partir d'une grille numérique. Pour cela il faut utiliser l'outil du gestionnaire de grilles. Cliquez sur Contour.

S Contour				
Value	Colour		1 and 1	
10.0000			20	
123.9091			Polylin	es Regions
237.8182			Z-min:	10.0000
351.7273			Z-max:	1263.0000
465.6364			Mi <u>n</u> imum:	10.0000
579.5455			Ma <u>x</u> imum:	1,263.0000
693.4545			Inter <u>v</u> al:	113.9091
807.3636			N <u>u</u> mber:	12
921.2727			hen l	Save
1035 1818		~		
Interval Row			Col	our <u>G</u> radient
10.0000	sert			reate Legend
De	elete		Cr	reate Contours
Eile name: C:\temp\mapinfo\cours\	D_contou	ır.tab		Browse
Help			[<u>Ok</u> ancel

Deux types de fichiers de sortie sont possibles soit des lignes soit des plages.

C. Calcul de zone de visibilité

Une zone d'inter visibilité est définie comme l'ensemble des zones d'un territoire qui sont visibles depuis un point d'observation.

Il existe différents champs d'utilisation des zones d'inter visibilité par exemple choisir la position de panneaux le long d'une route de manière à optimiser leur lisibilité.

Vertical Mapper produit deux types d'analyses d'inter visibilité.

La première nommée « Simple Calculation » produit deux types de zones en fonction du résultat de l'analyse, soit c'est visible soit cela ne l'est pas.

La seconde nommée « Complex Calculation » produit la même chose, mais, en plus, indique pour chaque point de la surface invisible de combien il faudrait ré hausser le point d'observation pour que la visibilité soit possible.

Pour activer l'outil de visibilité allez dans Tools/Viewshed...

🤤 Viewshed		×
Viewshed Parameters Simple Calculation C Complex Calculation	(Classified Grid: Visible n (+/- height to make JU	, Invisible) JST visible)
Looking From: X: 18	32,062.7685 Y	2,426,801.6944
View Point Height:	1.0000	Meters
Viewshed Offset:	1.0000	Meters
Viewing Radius:	9,240.0000	m
Earth Curvature:	Normal Earth Correct	ion 💌
Description:		
<u>F</u> ile name: Cttemp\ma	apinfo\cours\Z_Viewshe	ed.tab <u>B</u> rowse
<u>H</u> elp		Ok Cancel

Exercice : Réaliser une zone de visibilité simple à partir d'un MNT

- D. Création de profil topographique
- > Profils en long le long d'une ligne dessinée manuellement

Pour construire un profil à la volée, sélectionnez l'outil « Cross section » dans la barre Vertical Mapper, puis tracez le segment.

Profils en long le long d'une entité sélectionnée

Sélectionnez une ligne dans la table bocage, puis l'outil Cross section dans le gestionnaire de grilles.

🚄 MapInfo Professional - [b	ocage,Z Carte]		- - X
Fichier Edition Outils Objet	ts Sélection Table Affithage Carte Ve	iertiral Mapper Fenêtre Aide	
Sources Section			E Cara
289,686; 81,330	Cross Section	Z.grd	No. Cont
87,5			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
05,0			
82.5			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
			11 41
Meters			a total and
77,5			Général 🔀
75,0			
/2,5			
0 50	100 150 200 Melers	250	
Sample No.	1 2 3	4 5 6 ^	ତ୍ରାରା 👘 👘
⊢orizental Distan¢e	0.0000 2.7875 5.5750	8 3625 11.1500 13.3370	<u> </u>
True Distance(Z.ord)	0.00 2.79 5.50	0 06 11.15 10.54	
and the second second			
Grid	Manager		
i? 🔤 🤞			
	Z.grd Z. Viewshec.grc	Caquator	
STREET, STREET, ST		Grid Query	
		Create Slope & Aspect	19.11.000
		Point Inspection	and the first of the second
	💷 🚮 🛛 💹	Region Inspection Point-to-Pcint Visibility	1 march 1
	Info Colour 3D ∀iew Contour	r Viowshod Analysis	
Zoom: 3150 m * Mo	ndifable: Aucum * Sélection: boca	age	

Etape 6 : Transformer des données vectorielles en grilles

Convertir la couche parcelles en grille en utilisant le champ ID.

L'utilitaire «Region to grid » convertit des polygones MapInfo en grille. La valeur associée à chaque cellule est la valeur du champ sélectionné. Cette méthode est très utile pour créer des grilles classifiées.

Convertir la couche parcelles en grille en utilisant le champ ID.

Etape 7 : Combiner des couches

Le Grid Query est utilisé pour construire de nouvelles grilles à partir d'une ou plusieurs grilles existantes. Il permet de formuler des requêtes entre grilles.

Exemple : Calcul des parcelles dont les pentes sont supérieures à 5%

Activez l'outil Grid query :

Son Enter Grid Conditions		×
Grid Name	Туре	Ne <u>w</u>
Z.grd Z_Viewshed.grc	GRD GRC	<u>E</u> dit
No Weight.grd TEST.grd	GRD GRD	<u>I</u> nsert
TEST2.grd	GRD	Re <u>m</u> ove
White		Clea <u>r</u>
		()
		And / Or
Help Extents Verify	<u>N</u> ext >>	<u>C</u> ancel

La fenêtre de saisie des conditions apparaît : La partie supérieure liste les grilles ouvertes ainsi que leurs types respectifs. Sélectionner la grille de pente dans la liste puis cliquez sur le bouton « New ».

Enter Grid Conditions		
Orid Name	Туре	New
Z.grd	GRD	
Z_Viewshed.grc	GRC	<u>E</u> dit
No Weight.grd TEST.ard	0RD GRD	Insert
TEST2 grd	GRD	
Where	And / Or	Re <u>m</u> ave
Z.grd > 44.9994	AND	ence to OR
7 grd > 100 0000	E F	lit Clause
	In	sert Clause
	R	en uve Clause
	c	ear All
Help Exterts Verify	<u>N</u> ex (ì

Ajoutez la condition permettant de sélectionner les parcelles. Pour définir les opérateurs de comparaison, clic-droit sur l'opérateur par défaut AND.

Etape 8 : Drapage 3D

Procédure :

Afficher sous MapInfo : cartes\ contrôle des couches : Bocage (par-dessus) + MNT - Sélectionner l'outil VM « Create drape file » et cliquer sur la carte ; OK + sauvegarder, ce qui crée un fichier .drp - Grid Manager : 3D View = Run 3D Viewer : charger (load) MNT.grd , puis sélectionner le format .drp et charger le fichier créé précédemment. Régler les propriétés de la scène (notamment Camera Angle pour zoomer, dans l'onglet Viewing) + OK